Densely sulfophenylated segmented copoly(arylene ether sulfone) proton exchange membranes

Download
  1. (PDF, 2 MB)
  2. Get@NRC: Densely sulfophenylated segmented copoly(arylene ether sulfone) proton exchange membranes (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/ma200937w
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleMacromolecules
Volume44
Issue12
Pages49014910; # of pages: 10
AbstractSegmented copoly(arylene ether sulfone) membranes having densely sulfonated pendent phenyl blocks were synthesized by the coupling reaction of phenoxide-terminated oligomers with bis(4-hydroxyphenyl) sulfone and decafluorobiphenyl (DFBP), followed by postpolymerization sulfonation of the blocks containing pendent phenyl substituents. The coupling reaction was conducted at relatively low temperature by utilizing highly reactive DFBP to prevent any possible trans-etherification that would randomize the hydrophilic–hydrophobic sequences. Segmented copolymer molecular weights were reasonably high, as determined by viscosity measurements. Postsulfonation occurred selectively on the pendent phenyl substituent to yield hydrophilic blocks that were highly sulfonated in regular sequence on the linked phenyl rings. The resulting polymers gave transparent, flexible, and tough membranes by solution casting. Morphological observation by transmission electron microscopy (TEM) and atomic force microscopy (AFM) showed that the high local concentration and regular sequence of pendent sulfonic acid groups within the hydrophilic blocks enhanced nanophase separation between the hydrophobic and hydrophilic blocks. A comparison of copolymers with similar ion exchange capacities (IECs) indicated that proton conductivity and water uptake were strongly influenced by the hydrophilic block sequence lengths. Proton conductivity and water uptake increased with increasing block length, even at low relative humidity (RH). The ionomer membrane with X20Y20 (X and Y refer to the number of hydrophilic and hydrophobic repeat units, respectively) and 1.82 mequiv/g of IEC had a proton conductivity of 3.6 × 10–2 S/cm at 80 °C and 50% RH, which is comparable to that of perfluorinated ionomer (Nafion) membrane (4.0 × 10–2 S/cm).
Publication date
LanguageEnglish
AffiliationNRC Institute for Chemical Process and Environmental Technology; National Research Council Canada
Peer reviewedNo
NRC number52995
NPARC number18150454
Export citationExport as RIS
Report a correctionReport a correction
Record identifierfe89b819-f2ad-4143-8a66-7544d7085659
Record created2011-06-28
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)