Hedvall effect in cement chemistry
Ramachandran, V. S.; Sereda, P. J.

This publication could be one of several versions: author's original, accepted manuscript or the publisher's version. / La version de cette publication peut être l'une des suivantes : la version prépublication de l'auteur, la version acceptée du manuscrit ou la version de l'éditeur.

Publisher's version / Version de l'éditeur:

NRC Publications Record / Notice d'Archives des publications de CNRC:

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site
LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Contact us / Contactez nous: nparc.cisti@nrc-cnrc.gc.ca.
APPLICATIONS OF HEDVALL EFFECT IN CEMENT CHEMISTRY

By
V. S. RAMACHANDRAN
and
P. J. SEREDA

Reprinted from
NATURE PHYSICAL SCIENCE
Vol. 233, No. 42, October 18, 1971,
pp. 134-135

Research Paper No. 502
of the
Division of Building Research

OTTAWA
October, 1971
LES APPLICATIONS DE L'EFFET HEDVALL
A LA CHIMIE DU BETON

SOMMAIRE

On a appliqué l'effet Hedvall à des systèmes qui intéressent la chimie du béton, y compris le CaO, le Ca(OH)$_2$, le 3CaO.SiO$_2$, le β2CaO.SiO$_2$ et le 3CaO.SiO$_2$ hydraté. Les résultats obtenus indiquent que l'effet Hedvall est un nouvel instrument d'évaluation et un moyen d'examiner la réactivité et les mécanismes de réaction.
Hedvall Effect in Cement Chemistry

The increased reactivity of a solid during and as a consequence of a crystalline transformation is commonly known as the Hedvall effect. In a wider sense this effect may include increased reactivity near a transition point. The typical data quoted in support of the Hedvall effect refer to reactions in the binary systems containing silver salts with BaO, SrO and CaO yielding the reciprocal pairs.

There are still many unresolved problems in cement chemistry in spite of the use of powerful techniques such as X-ray diffraction, electron microscopy, electron microprobe, NMR and others. One of the problems is concerned with the difference in reactivities of the cement components. It seemed that the reactivity might be studied through the solid state reactions and that the use of the Hedvall effect might resolve the problem.

Fig. 1 Calibration curve for the estimation of AgNO₃ by DTA peak heights.

The two phases, tricalcium silicate (3CaO·SiO₂) and β-dicalcium silicate (β2CaO·SiO₂), which together form 70 to 80% of the cement clinker, play a dominant role in the physical,
chemical and mechanical properties in the hardening of portland cement paste. We have studied reactions between AgNO₃ and 3CaO·SiO₂, β2CaO·SiO₂, CaO, Ca(OH)₂ and a completely hydrated 3CaO·SiO₂ in order to test the effect in these systems.

Silver nitrate was mixed with different proportions of each of the reactants already mentioned and heated to 250° C in a DTA apparatus. There was a clear indication that some or all of the AgNO₃ was consumed in the reaction. The amount of AgNO₃ reacted in the time involved was determined by estimating the amount of the nitrate remaining in the system after completion of the exothermal reaction. The mixture was heated to a temperature of 250° C which is much greater than the exothermal peak temperature. DTA was then obtained on the cooling mode; an exothermal peak was found, which corresponds to the recrystallization of the unreacted silver nitrate. Calibrations were performed with different proportions of AgNO₃ and SiO₂. There is a good straight line relationship between the peak height or the peak area and the amount of AgNO₃ in the mixture (Fig. 1). Because it is quick and easy to determine the peak heights, all the estimations were done on this basis.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Reactants</th>
<th>Extent of reaction</th>
<th>Amount of Ca in AgNO₃</th>
<th>Amount of Ca in the reactant</th>
<th>Amount of Ca reacted (mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CaO</td>
<td>1 : 5.8</td>
<td>1</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ca(OH)₂</td>
<td>1 : 4.6</td>
<td>1</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3CaO·SiO₂</td>
<td>1 : 1.21</td>
<td>3</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>β2CaO·SiO₂</td>
<td>1 : 4.2</td>
<td>2</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Hydrated 3CaO·SiO₂</td>
<td>1 : 3.74</td>
<td>6</td>
<td>5.99</td>
<td></td>
</tr>
</tbody>
</table>

The reaction between CaO and AgNO₃ is almost stoichiometric and shows that 96.0% of CaO reacts with AgNO₃ (Table 1). A slightly lower value for the reacted CaO should be attributed to presence of a small quantity of relatively non-reactive CaO formed at a calcination temperature of 1,000° C. In other words, this method offers a new tool to study the reactivity of CaO formed in the calcination of limestones. Calcium hydroxide reacts with AgNO₃ stoichiometrically in the weight proportions of 1 : 4.6 which corresponds to the reaction of 1 mol of Ca(OH)₂ with 2 mol of AgNO₃. This is a quick and elegant method of estimating Ca(OH)₂.
Fig. 2 Differential thermal behaviour of $3\text{CaO} \cdot \text{SiO}_2$-$\text{AgNO}_3$ system. A, 66.67% AgNO_3; B, 60.0% AgNO_3; C, 50.0% AgNO_3.

The reaction of AgNO_3 with $3\text{CaO} \cdot \text{SiO}_2$ may be studied through the thermograms presented in Fig. 2. The curves A, B and C represent, respectively, the mixtures containing 66.6%, 60.0% and 50.0% AgNO_3. The exothermic peak, due to the reaction between the tricalcium silicate and silver nitrate, is completed within a few minutes. In curves A and B the presence of the exothermal peaks in the cooling mode shows clearly that an excess of AgNO_3 was mixed with the tricalcium silicate initially and, as expected, more nitrate remained unreacted in sample A. In curve C, however, no AgNO_3 remained after the reaction as evidenced by the absence of an exothermal effect in the cooling mode. Curves A and B were used to calculate the amount of AgNO_3 consumed in the reaction and both indicated that 27% of the Ca present in the tricalcium silicate phase had taken part in the reaction. This corresponds to 0.81 mol out of a total of 3 mol of Ca present in the $3\text{CaO} \cdot \text{SiO}_2$ phase (Table I). These results demonstrate
that about 27% of the tricalcium silicate sample is relatively more reactive than the rest. The conclusion that 27% of $3\text{CaO}.\text{SiO}_2$ had reacted with AgNO_3 in the time involved could also be confirmed by estimating the amount of $3\text{CaO}.\text{SiO}_2$ (73%) which remained unreacted by means of the new DTA method reported elsewhere.

This result confirms the finding obtained with isothermal conduction calorimetry and from the rate of hydration. After an induction period of a few hours the rate of heat development due to hydration reaches a maximum in the region of 7 to 8 h and decreases to a low value at 18 to 24 h. The rate of hydration has been shown to have an analogous behaviour which also suggests that 27% of our $3\text{CaO}.\text{SiO}_2$ is a material with a high reactivity. It seems that all Ca ions in tricalcium silicate are not equivalent and that some of them are more reactive. The Hedvall effect provides a new approach to the study of the relative reactivities of Ca ions in the sample. This does not mean that the remaining calcium silicate does not react with AgNO$_3$ nor that 27% is a unique proportion. It requires only a few minutes for 27% of the tricalcium silicate to react with AgNO$_3$ at about 200$^\circ$C and further heating for about twice this time does not show any difference. Even heating at 250$^\circ$C for 60 min causes a further reaction of only about 1.5% tricalcium silicate. A similar trend is obvious in the paste hydration but the periods should be reckoned in terms of days and months.

The $\beta\text{2CaO}.\text{SiO}_2$ phase in portland cement is known to hydrate relatively slowly compared with the $3\text{CaO}.\text{SiO}_2$ phase. One would expect that in the former system the percentage of the reactive part would be lower. This is so, as may be seen from Table 1; the dicalcium silicate phase has reacted about 6 per cent only and this corresponds to 0.12 mol of Ca out of the 2 mol in the sample.

A completely hydrated $3\text{CaO}.\text{SiO}_2$ contains a mixture of Ca(OH)$_2$ and the C-S-H phase. In this system practically all of the Ca present in the Ca(OH)$_2$ and in the C-S-H phase reacted with AgNO$_3$ (Table 1). For calculation purposes the following equation was used:

$$2 \{3\text{CaO}.\text{SiO}_2\} + 5\text{H}_2\text{O} \rightarrow \text{Ca}_3\text{Si}_2\text{O}_7.2\text{H}_2\text{O} \text{ (D-dried)} + 3\text{Ca(OH)}_2$$

Our observation has confirmed the validity of this complex equation and also reveals that all the Ca in the C-S-H phase, whether in the interlayer positions or in the layer itself, is equally reactive, by contrast with the observations for the tricalcium silicate phase. The reactivity in the C-S-H phase as defined by the Hedvall effect is in agreement with the fact that CO$_2$ and even water attacks it; Al and the SO$_4$ ions can replace the cations and the calcium is extractable with organic
solvents. This may also reflect in the characteristic property for accommodation of its surface with that of the adjacent materials in terms of interfacial bonding.

The Hedvall effect is a useful new tool for the study of various aspects of the physico-chemical phenomena in cement chemistry and probably in other allied fields.

We thank G. M. Polomark for experimental assistance.

V. S. RAMACHANDRAN
P. J. SEREDA

Building Materials Section,
Division of Building Research,
National Research Council of Canada,
Ottawa

Received August 9; revised September 27, 1971.

1 Hedvall, J. A., Einführung in die Festkörperchemie (Vieweg, Braunschweig, 1952).
This publication is being distributed by the Division of Building Research of the National Research Council of Canada. It should not be reproduced in whole or in part without permission of the original publisher. The Division would be glad to be of assistance in obtaining such permission.

Publications of the Division may be obtained by mailing the appropriate remittance (a Bank, Express, or Post Office Money Order, or a cheque, made payable to the Receiver General of Canada, credit NRC) to the National Research Council of Canada, Ottawa, K1A 0R6. Stamps are not acceptable.

A list of all publications of the Division is available and may be obtained from the Publications Section, Division of Building Research, National Research Council of Canada, Ottawa K1A 0R6.