Government of Canada
Symbol of the Government of Canada

Common menu bar links

The NRC Publications Archive is now operational; however, not all the features of the site are available at this time.

The following features remain unavailable:

  • Viewing/Downloading of full text publications
  • Author browse feature
  • Affiliation/institute/portfolio search
  • NRC Publication Archive statistics

NRC is currently working to restore these features and we will update this notice as these features become available. Thank you for your patience.


 
 
 
 

The ribonucleotide reductase R1 subunits of herpes simplex virus types 1 and 2 protect cells against TNFα- and FasL-induced apoptosis by interacting with caspase-8

 
 
Affiliation:
NRC Biotechnology Research Institute; National Research Council Canada
Language:
English
Type:
Article
Published in:
Apoptosis
Date:
2010
Pages :
256-271
NRCC #:
52767
NPArC #:
16616680
Keywords:
FasL; ICP6; ICP10; Viral inhibitor of apoptosis; Caspase-8; Apoptosis; article; bio; Canada; Cells; Ligands; NPArC; Protein; Proteins
Program(s):
Bioprocesses Development Program; Programme de développement de bioprocédés
Group(s):
Bioprocess Center; Centre Bioprocédés
Abstract:
We previously reported that HSV-2 R1, the R1 subunit (ICP10; UL39) of herpes simplex virus type-2 ribonucleotide reductase, protects cells against apoptosis induced by the death receptor (DR) ligands tumor necrosis factor-alpha- (TNFα) and Fas ligand (FasL) by interrupting DR-mediated signaling at, or upstream of, caspase-8 activation. Further investigation of the molecular mechanism underlying HSV-2 R1 protection showed that extracellular-regulated kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3-K)/Akt, NF-+¦B and JNK survival pathways do not play a major role in this antiapoptotic function. Interaction studies revealed that HSV-2 R1 interacted constitutively with caspase-8. The HSV-2 R1 deletion mutant R1(1-834)-GFP and Epstein-Barr virus (EBV) R1, which did not protect against apoptosis induced by DR ligands, did not interact with caspase-8, indicating that interaction is required for protection. HSV-2 R1 impaired caspase-8 activation induced by caspase-8 over-expression, suggesting that interaction between the two proteins prevents caspase-8 dimerization/activation. HSV-2 R1 bound to caspase-8 directly through its prodomain but did not interact with either its caspase domain or Fas-associated death domain protein (FADD). Interaction between HSV-2 R1 and caspase-8 disrupted FADD-caspase-8 binding. We further demonstrated that individually expressed HSV-1 R1 (ICP6Δ) shares, with HSV-2 R1, the ability to bind caspase-8 and to protect cells against DR-induced apoptosis. Finally, as the long-lived Fas protein remained stable during the early period of infection, experiments with the HSV-1 UL39 deletion mutant ICP6{increment} showed that HSV-1 R1 could be essential for the protection of HSV-1-infected cells against FasL. -¬ 2010 Springer Science+Business Media, LLC
 
Bookmark and Share:
 
 
 
 
Link:
HTML Link: