Control of femtosecond laser ablation of thin films from a dielectric surface by nonlinear interaction with the substrate

Download
  1. Get@NRC: Control of femtosecond laser ablation of thin films from a dielectric surface by nonlinear interaction with the substrate (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1103/PhysRevApplied.2.034001
AuthorSearch for: ; Search for: ; Search for:
TypeArticle
Journal titlePhysical Review Applied
ISSN2331-7019
Volume2
Issue3
Article number034001
AbstractControlling the interaction of an ultrafast laser pulse with a thin film remains a difficult task, especially when aiming to confine material modifications to subwavelength scales. We introduce a method to achieve reproducible submicron ablation of thin films from a dielectric surface, in a back-irradiation geometry. First, the pulse of 45-fs duration and 800-nm central wavelength nonlinearly interacts with the dielectric and undergoes strong but reproducible modifications of its intensity profile. Then, the pulse ablates a thin polymer film [four bilayers of poly(allylamine hydrochloride) and poly(sodium 4-styrene-sulfonate), 8 nm thick] from the back surface. We measure the hole with atomic force microscopy and study the influence of laser energy and focal plane position. The radius of the resulting hole is determined by a threshold intensity for ablation. Therefore, we also demonstrate how measuring the radius as a function of focal plane position provides a new approach to profiling a tightly focused laser beam under nonlinear propagation conditions. We compare the beam profile with that predicted by a widely used propagation model and show that the latter can semiquantitatively be applied to estimate the size of achievable holes.
Publication date
LanguageEnglish
AffiliationNational Research Council Canada
Peer reviewedYes
NPARC number21276361
Export citationExport as RIS
Report a correctionReport a correction
Record identifier95aaf778-b28d-4e18-8262-ab85c7151172
Record created2015-10-05
Record modified2016-05-09
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)