Integrated planar waveguide devices for evanescent field sensing and spectroscopy

DOIResolve DOI: http://doi.org/10.1109/ICTON.2014.6876292
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Proceedings titleICTON 2014: 16th International Conference on Transparent Optical Networks: Graz, 6th-10th July, 2014
Conference2014 16th International Conference on Transparent Optical Networks (ICTON), 6-10 July 2014, Graz, Austria
ISBN978-1-4799-5601-2
Article numberMo.C5.2
AbstractThe silicon photonic wire evanescent field (PWEF) sensor platform offers the advantages of small sensor size, high levels of function integration, and low cost manufacturing that comes with the use of established semiconductor fabrication processes. The technology should be fully compatible with existing infrastructure in molecular analysis and research and the manufactured sensor array chip cost should be low enough that the chips can be considered disposable. Furthermore, since many applications require simultaneous monitoring of many different simultaneous binding reactions, the possibility of integrating tens or even hundreds of independent molecular sensors on a single disposable sensor chip is very compelling. We present an overview of our multiplexed photonic wire sensor chip and a reader instrument that allows up to 128 independent binding reactions to be monitored simultaneously. A complete photonic wire molecular biosensor microarray chip architecture and supporting instrumentation is discussed. This microarray system is used to demonstrate a multiplexed assay for serotyping E. coli bacteria based on polyclonal antibody probe molecules. A coherent detection scheme that enables direct read-out of the optical phase and an order of magnitude enhancement of sensitivity compared to conventional detection is also discussed. Finally, we present advances in Fourier-transform interferometer arrays for spectroscopic sensing. A planar waveguide Fourier-transform spectrometer with densely arrayed Mach-Zehnder interferometers is presented. Subwavelength gratings are used to produce an optical path difference without waveguide bends. The fabricated device comprises of an array of 32 Mach-Zehnder interferometers, which produce a spatial interferogram without any moving parts, yielding a spectral resolution of 50 pm and a free-spectral range of 0.78 nm. As a result of similar propagation losses in subwavelength grating waveguides and conventional strip waveguides, loss imbalance is minimized and high interferometric extinction ratio of -25 to -30 dB is obtained. Furthermore, phase and amplitude errors arising from normal fabrication variation are compensated by the spectral retrieval process using calibration measurements.
Publication date
PublisherIEEE
LanguageEnglish
AffiliationNational Research Council Canada; Human Health Therapeutics
Peer reviewedYes
NPARC number23002067
Export citationExport as RIS
Report a correctionReport a correction
Record identifiere3549a63-1a28-4584-b714-ea8c34690ad8
Record created2017-08-02
Record modified2017-08-02
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)