Versatile molecular silver ink platform for printed flexible electronics

Download
  1. Available on May 3, 2018
  2. Get@NRC: Versatile molecular silver ink platform for printed flexible electronics (Opens in a new window)
DOIResolve DOI: http://doi.org/10.1021/acsami.7b02573
AuthorSearch for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for: ; Search for:
TypeArticle
Journal titleACS Applied Materials & Interfaces
ISSN1944-8244
1944-8252
Volume9
Issue20
Pages1722617237
Subjectadditive manufacturing; conductive molecular inks; metal organic decomposition (MOD); photosintering; printed flexible electronics
AbstractA silver molecular ink platform formulated for screen, inkjet, and aerosol jet printing is presented. A simple formulation comprising silver neodecanoate, ethyl cellulose, and solvent provides improved performance versus that of established inks, yet with improved economics. Thin, screen-printed traces with exceptional electrical (<10 mΩ/□/mil or 12 μΩ·cm) and mechanical properties are achieved following thermal or photonic sintering, the latter having never been demonstrated for silver-salt-based inks. Low surface roughness, submicron thicknesses, and line widths as narrow as 41 μm outperform commercial ink benchmarks based on flakes or nanoparticles. These traces are mechanically robust to flexing and creasing (less than 10% change in resistance) and bind strongly to epoxy-based adhesives. Thin traces are remarkably conformal, enabling fully printed metal–insulator–metal band-pass filters. The versatility of the molecular ink platform enables an aerosol jet-compatible ink that yields conductive features on glass with 2× bulk resistivity and strong adhesion to various plastic substrates. An inkjet formulation is also used to print top source/drain contacts and demonstrate printed high-mobility thin film transistors (TFTs) based on semiconducting single-walled carbon nanotubes. TFTs with mobility values of ∼25 cm2 V−1 s−1 and current on/off ratios >104 were obtained, performance similar to that of evaporated metal contacts in analogous devices.
Publication date
PublisherAmerican Chemical Society
LanguageEnglish
AffiliationNational Research Council Canada; Security and Disruptive Technologies; Measurement Science and Standards
Peer reviewedYes
NPARC number23002350
Export citationExport as RIS
Report a correctionReport a correction
Record identifiere60de2ce-06b0-4ab9-8184-da3a4e3d7a78
Record created2017-10-20
Record modified2017-10-23
Bookmark and share
  • Share this page with Facebook (Opens in a new window)
  • Share this page with Twitter (Opens in a new window)
  • Share this page with Google+ (Opens in a new window)
  • Share this page with Delicious (Opens in a new window)
Date modified: